methine proton resonances appeared as three singlets corresponding to two nonequivalent protons in the cis configuration plus one set of two equivalent protons in the trans configuration. The β methine proton resonances of the uncyclized intermediates 3 leading to these complexes would be expected to have a similar appearance.

Acknowledgment. This work was supported by the United States National Institutes of Health (Grant No. GM 29198) and the Canadian Natural Sciences and Engineering Research Council.

Registry No. 3a, 62081-93-0; 3b, 96213-12-6; 3c, 96213-14-8; 3d, 96213-16-0; 3e, 96213-18-2; 3f, 96213-19-3; 13 (R = H), 62086-50-4; 13 (R = Me, R = H), 96213-21-7; 13 (R = Me), 96213-22-8; 13 (R = Me, R = Ph), 96213-23-9; o-phenylenediamine, 95-54-5; 1,1,3,3-tetramethoxypropane, 102-52-3; 4,4-dimethoxy-2-butanone, 5436-21-5; 2,4pentanedione, 123-54-6; 4-methyl-o-phenylenediamine, 496-72-0; 4,5dimethyl-o-phenylenediamine, 3171-45-7; benzoylacetone, 93-91-4; 1phenyl-3-[(o-aminophenyl)imino]-1-butanone, 96213-24-0.

Contribution from Rocketdyne, A Division of Rockwell International, Canoga Park, California 91304

Synthesis and Characterization of NF4CrF6 and Reaction Chemistry of CrF5

ROLAND BOUGON,¹ WILLIAM W. WILSON, and KARL O. CHRISTE*

Received October 2, 1984

 NF_4CrF_6 , a new stable NF_4^+ salt containing an energetic counterion, was prepared by treatment of CrF_5 with an excess of NF_4HF_2 in HF solution. The composition and ionic nature of NF_4CrF_6 was established by elemental analysis, vibrational and ¹⁹F NMR spectroscopy, and its X-ray powder pattern. Reactions of CrF₅ with H₂O in HF, ClF₃, FNO, Cl₂, CFCl₃, and KrF₂ were studied to determine its acidity and oxidizing power. With FNO, a stable 1:1 adduct is formed, which on the basis of its vibrational spectra has the ionic structure NO⁺CrF₆⁻. The reaction of NOCrF₆ with NO produced (NO⁺)₂CrF₆²⁻, which by controlled pyrolysis was converted to NO⁺CrF₅. With stoichiometric amounts of H₂O in HF, CrF₅ did not form a stable OH₃⁺CrF₆⁻ salt but the reaction resulted in hydrolysis to CrF₃O. The influence of the strong Lewis acids AsF₅ and SbF₅ on the oxidizing power of CrF₅ was also investigated. On the basis of the fact that CrF_5 -SbF₅ mixtures can oxidize O₂ (IP = 12.06 eV) but not NF₃ (IP = 13.00 eV), the following qualitative oxidizer strength scale is proposed: $KrF^+ > PtF_6 > SbF_5 + F_2 + activation energy > CrF_5 - SbF_5$. The results of a normal-coordinate analysis of CrF_6^- and CrF_6^{2-} show the expected decrease in force constants with increasing negative charge.

Introduction

Chromium pentafluoride is a known, powerful oxidizer capable of fluorinating, for example, Xe to XeF_2 and XeF_4 .^{2,3} Furthermore, it is known that the oxidizing power of CrF₅ can be enhanced by the addition of a strong Lewis acid, such as SbF₅.⁴ Thus, these CrF_5 -Lewis acid mixtures can oxidize O_2 to O_2^+ and therefore are assigned an electron affinity comparable to that of PtF_6 .⁴ In view of this demonstrated high oxidizing power of CrF_5 , the known existence of the CrF_6 - anion,⁴ and the exceptional stability of NF_4^+ salts,^{5,6} the synthesis of the new oxidizer $NF_4^+CrF_6^-$ appeared feasible.

Experimental Section

Apparatus. Volatile materials were manipulated in stainless-steel vacuum lines equipped with Teflon-FEP U-traps, 316 stainless-steel bellows-seal valves, and a Heise Bourdon tube-type pressure gauge. Either quartz or sapphire tubes or Teflon-FEP ampules, equipped with stainless-steel valves, were used as reaction vessels. The lines and other hardware used were passivated with ClF₃ and, if HF was to be used, with HF. Nonvolatile or marginally volatile materials, such as SbF_5 and CrF_5 , were handled in the dry N2 atmosphere of a glovebox. Antimony pentafluoride was added to the reactors with a Teflon-needle syringe, and CrF₅, due to its tackiness at ambient temperature, was preferably handled after it had been cooled by liquid nitrogen. Metathetical reaction and

- (1) Permanent address: Centre d'Etudes Nucleaires de Saclay, IRDI/
- Permanent address: Centre d Etudes Nucleares de Saciay, IRD1/ DESICP/DPC, 91191 Gif sur Yvette, France.
 Zemva, B.; Zupan, J.; Slivnik, J. J. Inorg. Nucl. Chem. 1973, 35, 3941.
 Brown, S. D.; Gard, G. L. Inorg. Nucl. Chem. Lett. 1975, 11, 19.
 Brown, S. D.; Loehr, T. M.; Gard, G. L. J. Fluorine Chem. 1976, 7,
- (5) Christe, K. O.; Wilson, R. D.; Goldberg, I. B. Inorg. Chem. 1979, 18,
- 2572 and references cited therein. Christe, K. O.; Wilson, W. W.; Wilson, R. D. Inorg. Chem. 1980, 19, (6) 1494
- (7) Christe, K. O.; Wilson, R. D.; Schack, C. J. Inorg. Synth., in press.

solvolysis studies were carried out in HF solution by using an apparatus consisting of two Teflon-FEP U-traps interconnected through a coupling containing a porous Teflon filter.⁸

High-pressure, high-temperature reactions were carried out in 95- or 1000-cm³ Monel cylinders equipped with Monel valves. The loaded cylinders were placed into an oven set at the desired reaction temperature. Decomposition studies were carried out in a sapphire reactor (Tyco Co.). The reactor was connected to a stainless-steel valve by a Swagelok compression fitting using Teflon ferrules. The reactor was heated by immersion into a stirred oil bath.

Infrared spectra were recorded in the range 4000-200 $\rm cm^{-1}$ on a Perkin-Elmer Model 283 spectrophotometer. Spectra of solids were obtained by using dry powders pressed between AgCl or AgBr windows in an Econo press (Barnes Engineering Co.). Spectra of gases were obtained by using a Teflon cell of 5-cm path length equipped with AgCl windows. Raman spectra were recorded on either a Cary Model 83 or a Spex Model 1403 spectrophotometer using the 488-nm exciting line of an Ar ion laser or the 647.1-nm exciting line of a Kr ion laser, respectively. Sealed quartz, Teflon-FEP, or sapphire tubes were used as sample containers in the transverse-viewing-transverse-excitation mode. A previously described⁹ device was used for recording the low-temperature spectra. The ¹⁹F NMR spectra of the samples contained in sealed, 5-mm-o.d. Teflon-FEP tubes (Wilmad Glass Co.) were recorded at 84.6 MHz on a Varian Model EM390 spectrometer equipped with a variable-temperature probe. X-ray diffraction patterns of the powdered samples in sealed 0.5-mm quartz capillaries were obtained by using a General Electric Model XRD-6 diffractometer, Ni-filtered Cu K α radiation, and a 114.6-mm-diameter Philips camera.

Elemental analyses were performed by Mikroanalytische Laboratorien, Elbach, West Germany.

Materials. Literature methods were used for the syntheses of NF₄-SbF₆,¹⁰ KrF₂,¹¹ KrFSbF₆,¹² and FNO¹³ and for the drying of HF.¹⁴

- (10)541
- (11) Christe, K. O.; Wilson, R. D. Inorg. Chem. 1975, 14, 694.

Christe, K. O.; Schack, C. J.; Wilson, R. D. Inorg. Chem. 1977, 16, 849.

Miller, F. A.; Harney, B. M. Appl. Spectrosc. 1969, 23, 8. Christe, K. O.; Schack, C. J.; Wilson, R. D. J. Fluorine Chem. 1976,

Nitrogen trifluoride (Rocketdyne), F_2 (Air Products), NO, O_2 , ClF₃, Cl₂ (Matheson), CrF₃, SbF₅, AsF₅ (Ozark Mahoning), CrF₃·3H₂O (Baker and Adamson), and Cr powder (Sargent, 100 mesh) were commercially available. Anhydrous CrF₃ was also obtained by dehydrating the hydrate at 200 °C. The purity of the volatile compounds was checked by vibrational spectroscopy prior to use and, where necessary, improved by fractional condensation. The CFCl₃ (Du Pont) was dried by storage over P₂O₅ and transferred by distillation without further purification.

Synthesis of CrF₅. It was found that the synthesis of CrF₅ can be carried out under reaction conditions milder than those previously reported.¹⁵ In a typical preparation, CrF₃ (91.75 mmol) was loaded in the drybox into a prepassivated 1-L Monel high-pressure reactor. The reactor was connected to the vacuum line, and F₂ (947.66 mmol) was added at -196 °C. After 65 h at 260 °C, the remaining F₂ was removed at -196 °C, and CrF₅ (84.88 mmol, 92.5% yield based on CrF₃) was pumped off at 60-100 °C and trapped in a U-tube maintained at -78 °C.

Attempts to fluorinate Cr powder with ClF_3 in HF solution at room temperature for 16 h were unsuccessful, even in the presence of 2 atm of F_2 , and the Cr powder was quantitatively recovered.

Preparation of NF₄CrF₆. A mixture of CsF (10.11 mmol) and NF₄- SbF_6 (10.15 mmol) was loaded in the drybox into half of a prepassivated Teflon double-U metathesis apparatus.⁸ Dry HF (~8 mL) was added on the vaccum line to the half containing NF4SbF6-CsF, and the resulting mixture was stirred for 30 min at 25 °C. After this mixture and the filter were cooled to -78 °C, the metathesis apparatus was inverted and the resulting solution of NF4HF2 in HF was filtered into the other half of the apparatus. Part of the HF solvent was pumped off during warm-up toward 0 °C until the first signs of decomposition of NF4HF2 were noted. The apparatus was then cooled to -196 °C and taken into the drybox and CrF_5 (5.34 mmol) added to it. The apparatus was reattached to the vacuum line and warmed to room temperature. The HF solvent and the excess of NF_4HF_2 were pumped off successively for 2 h at 25 °C and 45 min at 40 °C. Since the weight and the infrared spectrum of the solid residue still indicated the presence of bifluoride species, the solid was transferred to a sapphire tube and heated in a dynamic vacuum for 2 h at 95 °C. The resulting deep red, solid residue (1.5 g, corresponding to a quantitative yield based on CrF_5) was shown by vibrational spectroscopy to consist mainly of NF₄CrF₆ with small amounts of SbF_6^- as the only detectable impurity. On the basis of its elemental analysis, the product had the following composition (mol %): NF₄CrF₆, 96.3; CsSbF₆, 3.7. Anal. Calcd for the NF₄CrF₆ (96.3%)-CsSbF₆ (3.7%) mixture: Cr, 19.25; F, 71.96; Cs, 1.88; Sb, 1.73. Found: Cr, 19.69; F, 70.15; Cs, 1.90; Sb, 1.79.

The filter cake from the metathetical preparation of the NF_4HF_2 solution consisted of 3.6806 g of $CsSbF_6$ (weight calculated for 10.113 mmol of $CsSbF_6$ 3.7281 g), identified by its Raman and infrared spectra.

Decomposition Study of NF₄CrF₆. The compound was heated stepwise from 75 to 145 °C in a sapphire tube in a dynamic vacuum. Traps kept at -78 and -210 °C were used for collecting CrF₅ and NF₃, respectively. A pyrolysis temperature of 125 °C was required for the slow evolution of CrF₅ and NF₃. The vibrational spectra of the solid residue at the end of the incomplete pyrolysis showed no significant changes, indicating that NF₄CrF₆ does not undergo a stepwise decomposition to salts containing polyanions.

Reaction of NF₃ and F₂ with CrF₃ or CrF₅. CrF₃, when heated in a high-pressure Monel cylinder with a twofold excess of NF₃ and a threefold excess of F₂ at an autogenous pressure of 100 atm to 260 °C for 45 h, was converted to CrF₅ in high yield without any NF₃ uptake. Heating of the resulting CrF₅ with a fivefold excess each of NF₃ and F₂ for 140 °C for 6 days and subsequently to 125 °C for 41 days did not produce any detectable amounts of NF₄CrF₆.

Synthesis of NOCrF₆. CrF₅ (2.06 mmol) was loaded into a Teflon-FEP ampule in the drybox. The ampule was connected to the vacuum line, and anhydrous HF (1.8 mL, liquid) was added at -196 °C. The CrF₅ only partially dissolved in the HF at room temperature, resulting in a light red-brown solution. FNO (2.21 mmol) was added to the ampule at -196 °C, and the mixture was slowly warmed to room temperature, resulting in a dark purple solution. All volatile material was pumped off at room temperature, leaving behind a dark red-brown solid (0.399 g; weight calculated for 2.06 mmol of NOCrF₆ 0.404 g), which was identified by vibrational spectroscopy and elemental analysis as NOCrF₆. Anal. Calcd for NOCrF₆: N, 7.15; Cr, 26.53; F, 58.16; O, 8.16. Found: N, 6.90; Cr, 26.30; F, 58.10; O (by difference), 8.70.

(14) Christe, K. O.; Wilson, W. W.; Schack, C. J. J. Fluorine Chem. 1978, 11, 71.

mmol) was dissolved in anhydrous HF (96.5 mmol), and NO (2.03 mmol) was added at -196 °C. The mixture was warmed to room temperature for several hours. All material that was volatile at room temperature was pumped off until the solid, yellow-brown (pink when finely ground) residue showed a constant weight (0.456 g; weight calculated for 2.03 mmol of (NO)₂CrF₆ 0.459 g). The material was identified as (NO⁺)₂CrF₆²⁻ by vibrational spectroscopy. Anal. Calcd for (NO)₂CrF₆: Cr, 23.01; F, 50.44. Found: Cr, 22.8; F, 50.2.

Synthesis of $(NO)_2CrF_6$. In a Teflon-FEP ampule NOCrF₆ (2.03)

Inorganic Chemistry, Vol. 24, No. 14, 1985 2287

Synthesis of NOCrF₅. A sample of $(NO)_2CrF_6$ (0.885 mmol) was heated in a sapphire tube to 130 °C in a dynamic vaccum until a constant weight (0.157 g; weight calculated for 0.885 mmol of NOCrF₅ 0.157 g) was obtained. The volatile material consisted of FNO, and the solid, brown residue was identified by vibrational spectroscopy as NO⁺CrF₅⁻. Attempts to convert NOCrF₅ to CrF₄ by vacuum pyrolysis at higher temperatures resulted in sublimation of the NOCrF₅ without decomposition.

The ClF₃-CrF₅ System. In a flamed-out quartz tube ClF₃ (12.22 mmol) was condensed at -196 °C onto CrF₅ (2.04 mmol). A deep red-brown solution was formed on warming the reaction mixture to 25 °C. The tube was cooled to -78 °C and material volatile at -78 °C was pumped off for 7 h. On the basis of the weight increase of the tube, the CrF₅ had retained 0.195 mmol of ClF₃. The Raman spectrum of this mixture, recorded at -130 °C, showed only bands due to solid ClF₃ and solid CrF₅.

The Cl₂-CrF₅ System. A mixture of CrF₅ (5.44 mmol) and Cl₂ (2.68 mmol) was heated in a sapphire tube to 127 °C for 57 h. On the basis of the observed material balance and infrared spectra of the solid residue, only 49% of the CrF₅ was reduced to CrF₄. Heating to higher temperatures resulted in a complete reduction of CrF₅ but also in the formation of some CrF₃ as a byproduct. Thus, heating of CrF₅ (4.71 mmol) and Cl₂ (2.44 mmol) to 185 °C for 20 h produced 0.6034 g of a brown solid (weight calculated for 4.71 mmol). Although the Cr analysis of the solid product was close to that expected for CrF₄ (calcd 40.62; found 40.42), its X-ray powder pattern and infrared spectrum showed the presence of some CrF₃.

The KrFSbF₆-CrF₅ and KrFSbF₆-CrF₅-HF Systems. In a sapphire tube a mixture of KrFSbF₆ (1.09 mmol) and CrF₅ (1.96 mmol) was warmed to the melting point of CrF₅ (34 °C), at which point gas evolution started. On the basis of the observed material balance and vibrational spectra, all KrFSbF₆ had decomposed to Kr, F₂, and SbF₅ but no oxidation of CrF₅ to CrF₆ had occurred. Similar results were obtained when this reaction was repeated in HF solution.

The CrF₃-H₂O-HF System. A Teflon-FEP ampule containing a Teflon-coated magnetic stirring bar was loaded in the drybox with CrF₅ (2.58 mmol), and HF (2.19 mmol) was added on the vacuum line. The ampule was taken to the drybox and cooled to -196 °C, and a preweighed amount of H₂O (2.58 mmol), sealed in a Teflon tube, was added by cooling the tube to -196 °C, cutting it open, and placing it inside the ampule. The ampule was closed, evacuated at -196 °C, and kept at 25 °C for 20 h with stirring. A pink solid and an orange-pink solution were formed. Removal of all volatile material at 25 °C in a dynamic vacuum resulted in the formation of a brownish solid residue, which was identified as CrF₃O by its vibrational spectrum, elemental analysis, and X-ray powder diffraction pattern.¹⁶

Reaction of CrF_5 -SbF₅ with O₂. The reaction between CrF_5 .*n*SbF₅ and O₂ was conducted in a manner similar to that reported by Gard et al.,⁴ except that it was carried out in a 45-mL Teflon-FEP ampule. A mixture of CrF₅ (2.37 mmol) and SbF₅ (6.54 mmol) was dynamically pumped at room temperature in an attempt to reach the previously reported⁴ CrF₅·2SbF₅ composition. The pumping had to be stopped before reaching this composition since CrF₅ was removed together with SbF5. At this stage with the assumption that only minor amounts of CrF5 had been removed, the molar ration of SbF3:CrF3 approximated 2.47:1. Oxygen (4.736 mmol) was then admitted into the ampule at -196 °C. When the mixture was warmed to room temperature, a pale yellow-green solid was formed. On the basis of the observed O_2 material balance, about 1 mol of O_2 was taken up per 1 mol of CrF_5 . No significant loss of mass was observed by dynamic pumping on the solid at room temperature for 1 h. The presence of $O_2^+Sb_2F_{11}^-$ in the solid product was established by Raman spectroscopy and its X-ray powder diffraction pattern.17

Reaction of CrF₅-**SbF**₅ with NF₃. Chromium pentafluoride (29.30 mmol) was combined in a Teflon-FEP ampule with SbF₅ (59.05 mmol). The mixture was outgassed by repeated pumping at -78 °C, followed by

- (16) Green, P. J.; Johnson, B. M.; Loehr, T. M.; Gard, G. L. Inorg. Chem. 1982, 21, 3562.
- (15) Slivnik, J.; Zemva, B. Z. Anorg. Allg. Chem. 1971, 385, 137.
- (17) McKee, D. E.; Bartlett, N. Inorg. Chem. 1973, 12, 2738.

⁽¹²⁾ Christe, K. O.; Wilson, W. W.; Wilson, R. D. Inorg. Chem. 1984, 23, 2058.

Figure 1. Vibrational spectra of solid NF₄CrF₆: traces A and B, infrared spectra of the powder at 25 °C pressed between AgCl and AgBr disks, respectively; traces C and D, Raman spectra of the solid recorded at -130 °C with 647.1-nm excitation at two different sensitivity levels, respectively. The listed assignments are based on space group T_d for NF₄⁺ (N) and O_h for CrF₆⁻ (C).

warming to 25 °C. The solution was then magnetically stirred and pressurized with about 2 atm of NF₃ gas. No significant NF₃ uptake was noticed after 1 h at room temperature and 1 hour at 60 °C. All other attempts to react CrF₅-SbF₅ with NF₃, such as those using longer reaction times, increased NF₃ pressures, and liquid HF as a solvent, were equally unsuccessful.

Reaction of CrF₅-SbF₅ with CFCl₃. CFCl₃ (10.21 mmol) was condensed at -196 °C onto a mixture of CrF₅ (1.45 mmol) and SbF₅ (1.56 mmol) in a Teflon-FEP ampule. When the mixture was warmed to 25 °C, a brown precipitate was formed, together with chlorine as evidenced by the yellow color of the CFCl₃ solution. An amorphous, yellow-green, solid residue was obtained after pumping off the volatile material at 25 The ¹⁹F NMR spectrum of the volatiles showed that part of the °C. CFCl₃ had been fluorinated to CF₂Cl₂, CF₃Cl, and CF₄.

When this reaction was repeated in the absence of SbF₅ with a 20-fold excess of CFCl₃, the main products were Cl₂, CCl₄, or CF₂Cl₂, and CF₃Cl. An amorphous, brownish, solid residue was obtained whose Cr analysis corresponded closely to the value expected for CrF₄. Anal. Calcd for CrF_4 : Cr, 40.62. Found: Cr, 40.55. Reaction of CrF_5 -AsF₅ with O₂. Equimolar amounts of AsF₅ and

CrF₅, when combined in a Teflon-FEP ampule, formed a deep red solution at -78 °C and did not undergo a visible reaction on warm-up to 25 °C. Upon addition of a threefold excess of O_2 at -196 °C and subsequent repeated temperature cycling between -78 and +25 °C, a rust-colored solid formed that, on the basis of its infrared spectrum and X-ray powder diffraction pattern, contained $O_2^+AsF_6^{-18}$ in addition to some unidentified material.

Results and Discussion

Synthesis and Characterization of NF_4CrF_6 . Since CrF_5 is a relatively strong and volatile Lewis acid, the direct synthesis¹⁹ of NF₄CrF₆ from NF₃, F₂, and CrF₅ at elevated temperature and pressure seemed feasible. However, our attempts using conditions (125 °C, 100 atm, 41 days) similar to those²⁰ that previously had

- (18) Young, A. R.; Hirata, T.; Morrow, S. I. J. Am. Chem. Soc. 1964, 86,
- Christe, K. O.; Wilson, W. W.; Schack, C. J.; Wilson, R. D. Inorg. (19) Synth. in press. Tolberg, W. E.; Rewick, R. T.; Stringham, R. S.; Hill, M. E. Inorg.
- (20) Chem. 1967, 6, 1156.

been successful for NF_4AsF_6 failed. Since NF_4CrF_6 is marginally stable at 125 °C (see below), the failure of the high-temperature-high-pressure method appears not to be caused by insufficient thermal stability of the NF_4CrF_6 final product. On the basis of similar experiences with other relatively stable NF_4^+ salts, such as NF_4BF_4 or NF_4PF_6 , the failure of the direct thermal synthesis methods for these compounds might be attributed to the inability of the corresponding Lewis acids to stabilize, under the given reaction conditions, the required NF3⁺ radical cation intermediate.12

Since NF₄CrF₆ could not be obtained by direct thermal synthesis, indirect methods¹⁹ were investigated. It was found that the reaction of $NF_4HF_2^6$ with CrF_5 in HF solution affords NF_4CrF_6 in essentially quantitative yield:

$$NF_4HF_2 + CrF_5 \xrightarrow{HF} NF_4CrF_6 + HF$$
 (1)

The use of an excess of NF4HF2 in this reaction is advantageous to ensure complete conversion of the CrF_5 . Since NF_4HF_2 is thermally unstable, decomposing above room temperature to gaseous NF₃, F₂, and HF⁶, its excess can easily be removed from the solid NF_4CrF_6 product by pumping at 25-100 °C.

The NF_4CrF_6 salt is a deep red, crystallinic solid, stable in a dynamic vacuum to about 120 °C. It starts to decompose slowly at 125 °C to NF₃, F₂, and CrF₅. No species such as NF₄Cr₂F₁₁, $(NF_4)_2CrF_6$, or CrF_6 was observed when the compound was gradually pyrolyzed under pumping at temperatures ranging from 125 to 145 °C. In HF at 23 °C the NF₄CrF₆ salt is highly soluble at a rate of 6.39 g of NF_4CrF_6/g of HF.

The ionic nature of NF_4CrF_6 , both in the solid state and in HF solution, was verified by vibrational and ¹⁹F NMR spectroscopy. The Raman and infrared spectra of the solid, together with the observed frequencies and assignments for tetrahedral NF₄⁺ $(T_d)^{21}$ and octahedral $\operatorname{CrF}_{6}^{-}(O_{h})$, are shown in Figure 1. The splittings into the three degenerate components observed for $v_3(F_2)$ of NF₄⁺

⁽²¹⁾ Christe, K. O. Spectrochim. Acta, Part A 1980, 36A, 921.

Figure 2. Vibrational spectra of solid NOCrF6: trace A, infrared spectrum of the powder pressed between AgBr disks; trace B, low-temperature Raman spectrum.

in the Raman spectrum are due to solid-state effects and are frequently observed for NF_4^+ salts.²¹ For CrF_6^- , only the two infrared-active modes, $\nu_3(F_{1u})$ and $\nu_4(F_{1u})$, have previously been reported for their Cs⁺ and NO₂⁺ salts.⁴ In spite of the broadness of the observed bands and the associated difficulty in choosing their band centers, the previously reported frequencies (CsCrF₆ $v_3 = 600, v_4 = 295 \text{ cm}^{-1}; \text{ NO}_2 \text{CrF}_6 v_3 = 600, v_4 = 275 \text{ cm}^{-1})^4 \text{ are}$ in poor agreement with our values for NF4CrF6 and NOCrF6 (see Figures 1 and 2). The results of a normal-coordinate analysis for CrF_6^- are given below.

The Raman spectrum of NF4CrF6 in HF solution at ambient temperature showed only minor shifts from the spectrum of the solid for the bands due to NF₄⁺ ($\nu_1 = 854$, $\nu_4 = 612$, $\nu_2 = 446$ cm⁻¹) but showed shifts to significantly higher frequencies for the bands due to CrF_6^- ($\nu_1 = 649 \rightarrow 678$, $\nu_5 = 305 \rightarrow 348$ cm⁻¹). These shifts, together with the surprisingly high solubility of NF_4CrF_6 in HF (see above) and the ¹⁹F NMR observations (see below), suggest strong interaction between CrF_6^- and the HF solvent.

The ¹⁹F NMR spectrum of NF₄CrF₆ in HF solution at 29 °C showed a triplet of equal intensity at $\phi = 215.2$ with $J_{^{14}N^{19}F} = 118$ Hz, characteristic^{20,22} for NF₄⁺. A very broad line centered at $\phi = -136$ was assigned to the HF solvent in exchange with CrF₆, which contains a paramagnetic Cr(V) central atom.

The X-ray powder diffraction pattern of NF₄CrF₆ was recorded and is given as supplementary material. The observed pattern is very complex and could not be indexed, suggesting that NF_4CrF_6 is not isotypic with the previously known tetragonal NF4MF6-type (M = P, As, Sb, Bi) salts.²³

Synthesis and Characterization of $NOCrF_6$, $(NO)_2CrF_6$, and NOCrF₅. Before this study, only two CrF_6^- salts had been known, i.e. CsCrF₆ and NO₂CrF₆.⁴ It was now found that, in addition to NF_4CrF_6 (see above), CrF_5 also forms a stable 1:1 adduct with When stoichiometric amounts of CrF₅ and FNO are FNO. combined in HF solution, the compound $NOCrF_6$ is formed:

$$FNO + CrF_5 \xrightarrow{HF} NOCrF_6$$
 (2)

(23) Christe, K. O.; Wilson, R. D.; Schack, C. J. Inorg. Chem. 1977, 16, 937.

Figure 3. Vibrational spectra of solid $(NO)_2CrF_6$: trace A, infrared spectrum; trace B, Raman spectrum.

The deep red solid is stable at room temperature and sublimes at higher temperatures. Its X-ray powder diffraction pattern (given as supplementary material) is too complex for indexing and strongly differs from that of cubic $NO^+AsF_6^{-.18}$ This is a further confirmation that CrF_6^- salts appear not to be isotypic with their corresponding main group metal(V) salts.

The ionic nature of solid $NOCrF_6$ was established by vibrational spectroscopy (see Figure 2). The infrared and Raman spectra clearly show a band at about 2310 cm⁻¹ characteristic for the NO stretching mode of the NO⁺ cation,^{18,24} in addition to the bands characteristic for the CrF_6^- anion (see above).

When an HF solution of $NOCrF_6$ was treated with a stoichiometric amount of NO, the $Cr^{V}F_{6}^{-}$ anion was reduced to $Cr^{IV}F_{6}^{2-}$, resulting in the formation of the new (NO)₂CrF₆ salt:

$$NOCrF_6 + NO \xrightarrow{HF} (NO)_2 CrF_6$$
 (3)

This salt is a yellow-brown (pink when finely ground), crystallinic solid that is stable at room temperature but decomposes in a dynamic vacuum at 130 °C. Its X-ray powder diffraction pattern is given as supplementary material. The ionic nature of (N- O_2CrF_6 was established by vibrational spectroscopy (see Figure 3). The NO⁺ stretching mode is again observed around 2300 cm⁻¹, with the slightly lower frequency, when compared to that of NOCrF₆, being due to the presence of a doubly charged counterion. The bands due to CrF_6^{2-} are similar to those of CrF_6^{-} but are shifted to slightly lower frequencies. This frequency shift is caused by the increased negative charge of the anion (see the normal-coordinate analysis). On the basis of the number of bands and their relative intensities, it appears safe to conclude that CrF_6^{2-} is also octahedral. The results of a normal-coordinate analysis for CrF_6^{2-} are given below.

Although the synthesis of K₂CrF₆ has been reported as early as 1950,²⁵ very little is known about the CrF_6^{2-} anion.^{26,27} Furthermore, the reported syntheses involving the fluorination of

- (25) Huss, E.; Klemm, W. Z. Anorg. Chem. 1950, 262, 25.
 (26) Bode, H.; Voss, E. Z. Anorg. Chem. 1956, 286, 136.
 (27) Clark, H. C.; Sadana, Y. N. Can. J. Chem. 1964, 42, 50.

Christe, K. O.; Guertin, J. P.; Pavlath, A. E.; Sawodny, W. Inorg. Chem. (22) 1967. 6. 53

Geichman, J. R.; Smith, E. A.; Trond, S. S.; Ogle, P. R. Inorg. Chem. (24) 1962. 1. 661

Figure 4. Vibrational spectra of solid NOCrF₅: trace A, infrared spectrum; trace B, Raman spectrum.

Figure 5. Infrared spectra of liquid SbF₅, CrF_5 , and their mixtures at 35 °C between AgCl disks.

either a mixture of KCl + CrCl₃ with F_2 or a mixture of KCl + CrF₄ with BrF₃ yielded products that varied in composition.^{25,27} Therefore, the above described synthesis, based on the readily accessible and purifiable CrF₅, FNO, and NO, offers a superior route to CrF₆²⁻ salts of excellent purity, as shown by the Raman spectrum of (NO)₂CrF₆ in Figure 3.

Figure 6. Raman spectra of liquid SbF₅, CrF_5 ·2SbF₅, and CrF_5 (at 35 °C) and of solid CrF₅ (at -130 °C).

When a sample of $(NO)_2 CrF_6$ was subjected to vacuum pyrolysis at 130 °C, the following stepwise decomposition occurred resulting in the formation of NOCrF₅, another new compound:

$$(NO)_2 CrF_6 \xrightarrow{130 \circ C} NOCrF_5 + FNO$$
 (4)

This salt is a brown, crystallinic solid that sublimes above 130 °C without further decomposition, thus preempting the use of its pyrolysis as a method for the preparation of CrF_4 . The X-ray powder diffraction pattern of NOCrF₅ is given as supplementary material. The ionic nature of NOCrF₅ was established by vibrational spectroscopy (see Figure 4), which showed the presence of the NO⁺ cation (ν_{NO} at about 2320 cm⁻¹). On the basis of the general similarity of the CrF₅⁻ bands to those observed for several GeF₅⁻ salts,^{28,29} a polymeric cis-fluorine-bridged structure appears most likely for CrF₅⁻.

Lewis Acid Strength of CrF₅. On the basis of a previous report, CrF₅ is amphoteric, forming adducts with the Lewis bases CsF and FNO₂ and the Lewis acid SbF₅.⁴ The Lewis acid character of CrF₅ was confirmed by the results of this study, which showed that CrF₅ forms stable NO⁺CrF₆⁻ and NF₄⁺CrF₆⁻ salts. Therefore, CrF₅ must be considered a relatively strong Lewis acid. However, it is significantly weaker than AsF₅, as shown by the fact that, even at -78 °C, CrF₅ does not form a stable adduct with ClF₃, while ClF₂⁺AsF₆⁻ is marginally stable at ambient temperature.³⁰ Similarly, attempts failed to prepare a KrF⁺CrF₆⁻

⁽²⁸⁾ Christe, K. O.; Wilson, R. D.; Goldberg, I. B. Inorg. Chem. 1976, 15, 1271.

⁽²⁹⁾ Mallouk, T. E.; Desbat, B.; Bartlett, N. Inorg. Chem. 1984, 23, 3160.

Table I. Vibrational Frequencies and Modified Valence Force Fields⁴ of CrF₆⁻ and CrF₆²⁻

			freq, cm ·							
	assign in point group O _h			CrF ₆ -			force const, mdyn/Å			
as				NF ₄ CrF ₆	av	$(NO)_2CrF_6$		CrF6 ⁻	CrF ₆ ²⁻	
Alg	<i>v</i> ₁	v _{svm} in phase	650	649	649	608	$F_{11} = f_r + 4f_{rr} + f_{rr'}$	4.714	4.137	
E,	ν_2	v_{sym} out of phase	530	548	537	521	$F_{22} = f_r - 2f_{rr} + f_{rr'}$	3.227	3.038	
\mathbf{F}_{1n}	V 3	Vaevm	675	665	670	625	$F_{33} = f_r - f_{rr'}$	3.103	2.748	
	V.	δ	310	305	308	320	$F_{44} = f_{a} + 2f_{aa} - 2f_{aa''} - f_{aa'''}$	0.2878	0.3107	
	•	Bayin					$F_{34} = 2(f_{ra} - f_{ra''})$	0.2430	0.2623	
F2.	Vs	δενσ	310	305	308	298	$F_{55} = f_{\alpha} - 2f_{\alpha\alpha'} + f_{\alpha\alpha'''}$	0.2654	0.2485	
~8	5	by					f.	3.416	3.077	
							fre	0.248	0.183	
							fee	0.308	0.329	

^aAssuming $F_{34} \equiv$ minimum.

salt from KrF₂ and CrF₅ in either the presence or absence of HF as a solvent. For comparison, KrF⁺AsF₆⁻ is well-known and decomposes only slowly at room temperature.³¹

Although a distinct CrF5.2SbF5 adduct, formulated as CrF4- Sb_2F_{11} , has previously been reported,⁴ we could not verify the existence of such an adduct. Attempts to reach this composition through vaporization of SbF₅ from CrF₅ solutions in an excess of SbF₅, as well as vibrational spectra (see Figures 5 and 6), failed to give any evidence for a definite compound and resulted in the simultaneous removal of both components. In our opinion, the spectra of these CrF₅-SbF₅ mixtures are best interpreted in terms of intersolutions of the two compounds, with the observed changes in the spectra being due to different degrees of mixed fluorine bridging between the individual components. This view is also supported by the fact that the viscosity of SbF₅ is strongly decreased by the dissolution of the highly polymeric CrF_5 . If a predominantly ionic CrF₄Sb₂F₁₁ adduct were formed, an increase in viscosity or formation of a solid would be expected. Liquid AsF5 was found to be also an excellent solvent for CrF₅, resulting in dark brown solutions of low viscosity.

Oxidation Reactions with CrF₅. Oxidation reactions involving either neat CrF_5 or CrF_5 -Lewis acid (SbF₅ or AsF₅) mixtures were carried out to determine its relative oxidative power. It was found that neat CrF₅ does not oxidize ClF₃ to ClF₅. Furthermore, even in the presence of F_2 , it does not oxidize O_2 to O_2^+ at 30 °C and NF₃ to NF₄⁺ at 125 °C. It is capable, however, of oxidizing Cl₂ to ClF at 120 °C and CFCl₃ to Cl₂ and a mixture of CF₂Cl₂, CF₃Cl, and CF₄ at room temperature. In both reactions, CrF₅ is reduced to lower valent chromium fluorides. Some brown solid, presumably $CrF_{4}^{27,32}$ could be sublimed from the crude CrF_{5} + Cl₂ reaction product in a static vacuum at 185 °C. The sublimation residue was shown by vibrational spectroscopy and X-ray powder diffraction data to contain also some CrF_3 . The brown sublimate showed a broad, strong Raman line at 780 cm⁻¹, no detectable X-ray diffraction lines, and two broad infrared bands ranging from 830 to 740 and 640 to 490 cm⁻¹, respectively. The infrared spectrum is quite distinct from that of CrF₃, which does not exhibit a band in the 800-cm⁻¹ region. The brown color observed for our sample of CrF₄ is in good agreement with Wartenberg's original report³² and does not confirm a subsequent report stating that CrF_4 is dark green and that the brown color is due to an oxide layer generated by exposure to air.²⁷

The oxidizing power of CrF_5 is significantly enhanced by strong Lewis acids, such as SbF_5 and AsF_5 . This is not surprising and is generally the case for many oxidizers. Thus, CrF3.2SbF5 has been reported to oxidize O2 to O2+ at room temperature, and the solid reaction product has been formulated as $O_2(CrF_4Sb_2F_{11})$. We have confirmed this reaction and its approximate 1:1 stoichiometry and have identified the solid reaction product as a mixture of $O_2^+Sb_2F_{11}^-$ and lower valent chromium fluorides:

$$O_2 + CrF_5 \cdot 2SbF_5 \rightarrow O_2^+ Sb_2F_{11}^- + [CrF_4]$$
 (5)

Extraction of $O_2^+SbF_6^-$ from the product was possible by treatment with liquid HF.

The oxidation of O_2 to O_2^+ can also be achieved with CrF_5 -AsF₅ mixtures at or below room temperature. By analogy with the corresponding SbF₅ system, the solid reaction product contained $O_2^+AsF_6^-$.

Attempts were unsuccessful to oxidize NF₃ to NF₄⁺ using similar conditions, i.e. pressurizing liquid CrF₅·2SbF₅ with several atmospheres of NF₃ at room temperature. On the basis of the facts that CrF₅-Lewis acid mixtures are capable of oxidizing O₂ and Xe,⁴ which have ionization potentials of 12.06 and 12.13 eV, respectively, but cannot oxidize NF3 with an IP of 13.00 eV, their electron affinity or oxidizing power can be limited to the relatively narrow range of 12.13-13.00 eV. Since PtF₆, KrF⁺ salts, and F2-Lewis acid mixtures activated by a suitable activation energy source are all capable of oxidizing NF_3 to NF_4^+ under comparable conditions,¹² CrF_5 -Lewis acid mixtures are a weaker oxidizer than any one of these systems. On the basis of the above and previous 12 results, the following order of decreasing oxidizer strength can be proposed for these systems: KrF^+ salts > PtF_6 > Lewis acid + F_2 + activation energy > CrF₅-Lewis acid.

Reactions of CrF₅ with either KrF₂ or KrF⁺ salts were carried out in attempts to produce CrF₆, but so far all attempts in this direction have been unsuccessful.

Synthesis and Properties of CrF₃O. Our attempts to isolate a stable oxonium salt of CrF₆⁻ according to

$$\operatorname{CrF}_{5} + \operatorname{H}_{2}\operatorname{O} + \operatorname{HF} \xrightarrow{\operatorname{Hr}} [\operatorname{OH}_{3}^{+}\operatorname{CrF}_{6}^{-}]$$
 (6)

were unsuccessful but resulted in the formation of CrF₃O after removal of the HF solvent:¹⁶

$$[OH_3^+CrF_6^-] \xrightarrow{-HF} CrF_3O + 3HF$$
(7)

The intermediate formation of OH₃CrF₆ was not unequivocally established but appears very likely from the observation of a pink solid and stable pink HF solution. This reaction produces CrF₃O in quantitative yield and is superior to the previously reported¹⁶ synthesis, which involves the reaction of CrO₃ with ClF, followed by multiple treatments with F2 at 120 °C. The properties observed for CrF_3O were in good agreement with those previously reported.¹⁶ The observed X-ray powder diffraction pattern is given as supplementary material.

Normal-Coordinate Analyses of CrF₆⁻ and CrF₆²⁻. Since for CrF_6^{2-} no vibrational spectra at all and for CrF_6^{-} only incomplete data⁴ had previously been reported, normal-coordinate analyses were carried out for these two anions. Modified valence force fields were computed, assuming $F_{34} \equiv$ minimum, due to the underdetermined nature of the F_{1u} block. On the basis of a previous study³³ and experience with similar octahedral ions,³⁴ this condition is expected to be a good approximation to a general valence force field. The observed frequencies, their assignments in point group O_h , and the computed force constants are summarized in Table

Christe, K. O.; Pavlath, A. E. Z. Anorg. Allg. Chem. 1965, 335, 210. Gillespie, R. J.; Schrobilgen, G. J. Inorg. Chem. 1976, 15, 22. (30)

⁽³²⁾ Wartenberg, H. V. Z. Anorg. Allg. Chem. 1941, 247, 135.

⁽³³⁾

Sawodny, W. J. Mol. Spectrosc. 1969, 30, 56. Christe, K. O.; Wilson, W. W.; Curtis, E. C. Inorg. Chem. 1983, 22, (34) 3056 and references cited therein.

I. As expected, the Cr-F stretching force constant f, decreases from CrF_6^- to CrF_6^{2-} due to a bond weakening caused by the increased $Cr^{\delta+}-F^{\delta-}$ polarity of the bonds in CrF_6^{2-} .

Conclusion. Chromium pentafluoride is a moderately strong Lewis acid capable of forming stable CrF_6 salts with NF_4 and NO⁺. The NF₄⁺ salt is of particular interest as an oxidizer because in it an oxidizing anion is combined with a strongly oxidizing cation. Contrary to previous reports,⁴ no evidence was found for CrF₅ forming a distinct, predominantly ionic CrF₄Sb₂F₁₁ adduct with SbF₅. The oxidizing power of CrF_5 is greatly enhanced by strong Lewis acids but does not match that of PtF_6 . Chromium(V) salts can selectively be reduced to Cr(IV) salts with NO. In this manner the new Cr(IV) salts $(NO)_2CrF_6$ and $NOCrF_5$ can be prepared. Similarly, CrF₅ can be reduced to mainly CrF₄ with

either Cl₂ or CFCl₃. Reaction of CrF₅ with stoichiometric amounts of H₂O in HF produces an unstable oxonium salt that decomposes on HF removal to CrF₃O, thus providing a convenient new synthesis for this compound.

Acknowledgment. The authors are grateful to Drs. C. J. Schack and L. R. Grant and R. D. Wilson for their help and to the U.S. Army Research Office and the Office of Naval Research for financial support. R.B. is also indebted to Dr. W. Kaska and the University of California, Santa Barbara, for their hospitality and to the DRET for financial support.

Supplementary Material Available: A table of X-ray powder diffraction patterns for some Cr-containing compounds (1 page). Ordering information is given on any current masthead page.

Contribution from Division of Physical Chemistry 1, Chemical Center, University of Lund, S-221 00 Lund, Sweden

Kinetics and Mechanism for Oxidation of Tetracyanoplatinate(II) by Chlorine and Hypochlorous Acid and for Hydrolysis of Chlorine in Aqueous Solution[†]

LISE DROUGGE and LARS I. ELDING*

Received November 7, 1984

Oxidation of $Pt(CN)_4^{2-}$ in aqueous solutions of chlorine has been followed by stopped-flow spectrophotometry. For pH <~7, the reaction takes place by two parallel paths with Cl_2 and HOCl as oxidants according to the rate law rate = $(k_{Cl_2}[Cl_2] + k_{Cl_2}]$ k_{HOC} [HOC])[Pt(CN)₄²⁻]. In unbuffered solutions of chlorine in aqueous NaClO₄, the slow HOCl path is predominant, whereas in weakly acidic solutions buffered with HCl, oxidation takes place via the 10⁵ times faster Cl₂ path. For certain conditions, the displacement of the hydrolysis equilibrium of chlorine

$$Cl_2 + H_2O \xrightarrow{k_1}_{k_1} HOCl + Cl^- + H^+$$

becomes rate-determining for the oxidation of $Pt(CN)_4^{2-}$ by Cl_2 , which then appears to be zero order in complex. Such experiments give k_1 and k_{-1} . Rate constants at 25 °C for a 1.00 M perchlorate medium are $k_{Cl} = (1.08 \pm 0.10) \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$, $k_{HOCl} = 97.9$ $\pm 1.1 \text{ M}^{-1} \text{ s}^{-1}$, $k_1 = 8.7 \pm 0.2 \text{ s}^{-1}$, and $k_{-1} = (2.66 \pm 0.03) \times 10^4 \text{ M}^{-2} \text{ s}^{-1}$. The equilibrium constant for the chlorine hydrolysis is obtained from the kinetics as $(3.27 \pm 0.11) \times 10^{-4} \text{ M}^2$. The primary reaction product for oxidation of Pt(CN)₄²⁻ by an excess of Cl₂ in acidic solution is *trans*-Pt(CN)₄Cl(H₂O)⁻, which slowly reacts with a second chloride to give *trans*-Pt(CN)₄Cl₂²⁻. Oxidation by HOCl gives primarily trans-Pt(CN)₄(OH)₂²⁻, which rapidly reacts with a second molecule of HOCl to form a stable hypochlorite complex, trans-Pt(CN)₄(OCl)(OH)²⁻. In weakly alkaline solution (pH 11), oxidation of Pt(CN)₄²⁻ with ClO⁻ gives trans-Pt- $(CN)_4(OH)_2^2$ as the reaction product. Oxidation with HOCl and CIO⁻ is an inner-sphere two-electron transfer with the oxygen of the hypochlorite as the bridging atom. Chloride anation of trans- $Pt(CN)_4(OCl)(H_2O)^-$ is a rapid second-order reaction with rate constant $26.5 \pm 0.2 \text{ M}^{-1} \text{ s}^{-1}$

Introduction

Oxidation of square-planar complexes of platinum(II) by chlorine or bromine in aqueous solution gives a *trans*-dihalo complex of platinum(IV) as the final reaction product. This is a classical method to prepare such platinum(IV) complexes.¹ It was shown already in 1954, in a study of the chlorination of PtCl₄²⁻, that aqua complexes appear as intermediates in this reaction.² The two-step mechanism of eq 1 has been suggested²⁻⁷

$$PtL_4 + X_2 \xrightarrow{fast} X - PtL_4 - OH_2 \xrightarrow{+X^*} X - PtL_4 - X$$
(1)

(X = halide). The first and very rapid reaction has been described as an oxidative addition of dihalogen to the platinum(II) complex.³⁻⁷ This reaction is very fast in most cases, and there are very few reports on its kinetics so far. From stopped-flow measurements of the oxidation of PtCl₄²⁻ by chlorine, it was concluded that the rate was independent of the concentration of one or both reactants.5 That conclusion was later rebutted, and the oxidation was shown to be first order in both chlorine and complex.⁷ Such a rate law was also found for the oxidation of PdCl₄²⁻ by chlorine.⁸ Oxidation of $Pt(CN)_4^{2-}$ by iodine has been studied by use of stopped-flow spectrophotometry, and those results are also compatible

with a mechanism involving reaction between an iodine molecule and the complex.⁷

The subsequent reaction of eq 1 is much slower, and it has been the subject of several kinetic studies. It is a substitution of the water ligand of the intermediate aqua complex by halide. This reaction is accelerated by platinum(II) complexes⁵⁻⁷ and by free halide.3,4,7,9

Aqueous solutions of chlorine contain Cl2 and HOCl in equilibrium with each other according to eq 2.10 Both these molecules

$$Cl_2 + H_2O \xleftarrow{k_1}{\leftarrow} HOCl + H^+ + Cl^-$$
(2)

oxidize platinum(II) complexes quantitatively.¹¹ The possibility

- Jones, M. M.; Morgan, K. A. J. Inorg. Nucl. Chem. 1972, 34, 259. Morgan, K. A.; Jones, M. M. J. Inorg. Nucl. Chem. 1972, 34, 275.
- (6) (7)
- (8)
- Elding, L. I.; Gustafson, L. Inorg. Chim. Acta 1976, 19, 165. Mureinik, R. J.; Pross, E. J. Coord. Chem. 1978, 8, 127. Vuik, C. P. J.; Poë, A. Inorg. Chim. Acta 1979, 34, 129. Latimer, W. M. "Oxidation Potentials", 2nd ed.; Prentice-Hall: En-(10)
- glewood Cliffs, NJ, 1952; p 54.

[†]This work is part of a Ph.D. thesis by L.D., Lund University, 1985.

⁽¹⁾ "Gmelins Handbuch der Anorganischen Chemie", 8th ed.; Verlag Chemie: Weinheim, West Germany, 1940, 1957; Platinum, Parts C and D (for instance: Part C, pp 206, 292; Part D, pp 490, 509). Rich, R. L.; Taube, H. J. Am. Chem. Soc. 1954, 76, 2608. Skinner, C. E.; Jones, M. M. J. Am. Chem. Soc. 1969, 91, 4405. Mason, W. R. Inorg. Chem. 1971, 10, 1914.